Cheap Infrared Filters

Infrared Film Photography

I occasionally shoot infrared film or, more accurately, “extended red sensitivity” film which extends almost to the near infrared (NIR) range. This includes Rollei IR400 and Rollei Superpan 200 which are purportedly the same film (Agfa Aviphot 200).

Cheap Filters From Brands You’ve Never Heard Of

I shoot 35mm and medium format, but my biggest IR filter is 77mm which is too small for my Rolleiflex 50mm and my Hasselblad 40mm lenses,. I needed a 95mm IR720 filter. Looking on the web, 95mm filters are priced upwards of $160 US which, while not outrageous for the size, is more than I wished to pay for a filter I will not use very often. I have a Hoya R72 filter and cheap no-name Chinese IR720 filter. To me, they work equally well. Searching online, I couldn’t find a dirt-cheap 95mm IR filter anywhere, but on Amazon I found a Desmond-Ice” 720nm filter for $50, so I ordered it.

Is That Cheap Filter Any Good?

When the new 95mm filter arrived, it was not nearly as dark as my other 720nm filters and, unlike the others, I couldn’t see any Wood effect (dramatic lightening of green foliage) when looking through it in bright sunlight. That’s when I started reading the Amazon reviews for the ICE IR filters (including for other sizes) and noticed complaints that these filters were not true IR filters. I almost sent it back immediately, but instead decided to test it.

I’m glad I did because, at least when used with Rollei IR400 film, the ICE filter worked as well as my other 720nm filters. At identical exposures on the same roll of film, the density and contrast of the negatives were the same for both filters and the IR effects were indistinguishable. I don’t have the means to measure the spectral response of filters, but I suspect this filter, rather than having a true 720nm cutoff, has a cutoff slightly further down the visible light spectrum. The description for this filter says it is “equivalent to a Hoya R72 and Wratten 89B”. While I’ve seen references that describe the R72 and 89B as the same, there are more authoritative references (last page) that suggest that the Wratten 89B has a cutoff in the high 600s while the Wratten 88A , with a cutoff in the low 700s, is closer to the 720nm cutoff that seems to be the most popular for consumer B&W infrared film photography.

There is a chart on the back of the plastic box for my Hoya filter that says the R72 filter transmittance is 95% for 760 – 860nm. Presumably the transmittance at 720nm is 50%. I noticed that, in addition to its 720nm filter, Desmond-ICE sells 760nm filters, although I have no idea how that would compare to the Hoya R72.

But…

Another complaint I saw in the reviews was that the filters could be difficult or impossible to remove. I found that to be true. If you shoot infrared with an SLR, this is not a problem you want with a nearly opaque filter that has to be taken off and put back on virtually every time you move the camera. Aluminum filter frames are notorious for getting stuck, but I use a lot of aluminum (and brass) filters and this one was worse. I tested it on a few brass B+W filters, a couple aluminum adapter rings, and my 50mm Rolleiflex lens, It was finicky on most of them. There was no debris in the threads and no evidence of cross threading, so I am assuming the threads weren’t machined quite right. With one adapter ring, I had to use filter wrenches to separate them. After that I was very careful, but was able to screw the filter on the others all the way and remove it without a filter wrench if I didn’t tighten it. As it happens, the adapter ring that was most problematic is one I will not likely use with this filter.

Sample Film Camera Pictures: Hoya vs. Desmond-ICE

But What About Digital Cameras?

Finally, I tested the filter on my unmodified Nikon D850. I’m a B&W film shooter, but I bought a D850 because it’s getting increasingly difficult to transport film on the airlines and the D850 works with all my Nikon lenses going back to the 1970s. At the moment, I am pretty close to being a digital know-nothing. My D850 is stock from the factory. As I understand it, some people modify them to remove a low pass filter in front of the sensor which allows it to record a wider light spectrum which includes IR and that doing so shortens the required exposure time significantly. That summarizes everything I know about shooting infrared with a digital camera. I tested the filter with the D850 because I suspected it might behave differently than the Hoya, but I have no idea whether anyone shoots infrared with an unmodified camera or whether differences in the ICE filter would matter to anyone who uses a modified camera.

The ICE filter does not work the same as the Hoya filter on my unmodified D850. The Hoya exhibited the Wood effect while the ICE filter did not. The Hoya required considerably longer exposure than the ICE filter. I had the camera set to the monochrome mode with the filter simulations turned off, which is how I would most likely use the camera if I was unable to shoot film for some reason. For these pictures, I inadvertently had the ISO set to 64 which bothered me later, so I tested it again with the ISO set to 25600. The result was the same.

Sample Digital Camera Pictures: Hoya vs. Desmond-ICE

My Amazon Review was Rejected

I attempted to post a review of this filter on Amazon that included the pictures above, but the review was rejected because it failed Amazon’s “community guidelines”. Unfortunately, they never say which one, so tried to guess what they didn’t like and resubmitted it. I never heard back. The same thing happened with review I submitted before this one, so I’m done writing Amazon reviews.

Oh, Noooooooo! I Dropped My Nikon F6!

A few days before Christmas, I dropped my Nikon F6 on the hard laminate floor of the studio. Actually, the strap slipped through the adjustment buckle. I had the strap around my neck, but was not holding onto the camera. I’m a big believer in neck straps because I am obsessive about not dropping a camera. Disappointingly, it was a Nikon strap and it wasn’t stitched. It’s one of those heavy elastic straps that is easy on your neck.

Upon examination, it looked like the camera body was okay and that the only damage was to the attached 24-120mm f/4G lens which had the zoom ring knocked out of position. Focusing, vibration reduction, and aperture all seemed to be working fine and I was able to manipulate the zoom through its entire range without any obvious impairment.

Damaged 24-120mm Nikkor f4/G lens. Zoom ring loose and out of position.

Sending the lens to Nikon for repair

I went to the Nikon website and filled out the self-service repair submittal form where they give you an estimate based on how you describe the problem. Since I dropped the lens, the estimate was for $493 which is not unreasonable as an average for a $1100 lens that’s been dropped. They explain, of course, that it could cost more in which case they’ll request further approval before doing the repair.

I shipped the lens via UPS on December 22nd. Since I insured the shipment, they required that I drive 15 miles to drop the parcel off at their main facility rather than any of the many UPS drop-off places scattered around town. I would have foregone the insurance if they mentioned that detail before I completed the entire online process including payment by credit card. It also never occurred to me that they wouldn’t have normal business hours, especially right before Christmas, so I went there before lunch only to find out that they’re only open from 2-4 PM. Thankfully, a guy sweeping the parking lot took me to the back office where they accepted my parcel. Yay! Thanks, UPS.

As shipped. Note UPS shipping label as well as the Nikon shipping label. UPS removed the hazmat sticker.

The lens arrived at Nikon on December 27th and they sent me an acknowledgement on January 2nd. Two weeks later there was a charge on my credit card for $326, so I logged in and checked the repair status and the website had a UPS tracking number listed. Oddly, they don’t email status info, a final invoice, or tracking information. They apparently just expect that, if you want that information, you’ll log in and check it yourself periodically.

Lens comes back from Nikon

On the bright side, I got the lens back one month, to the day, after they received it. The box was pretty beat up, but the lens was padded with two layers of thick sturdy bubble wrap and there was no visible damage to the lens. So, the saga has come to a happy ending, although I have not yet run a roll of film through the camera and lens to test it.

Lens was came back from Nikon with no visible damage despite the box being beat up.
Lens wrapped in bubble wrap on return trip. Maybe the same bubble wrap I used to ship it to them.
Paperwork described what was repaired and what functions were tested as well as a QC checklist.
Camera with repaired lens attached.

I think I saw on their website that normal turnaround is 5 days for repair which seems extraordinary. I was very pleased to get the lens back in a mere month which included the New Years holiday. When I sent my F2 off for repair a few years ago, it was gone for 11 months. When I sent a Rolleiflex lens off for repair in 2022 it was also gone for 11 months. Film camera repairs are no trivial matter anymore. Shops are backlogged, parts are scarce, and experienced film repair technicians are retiring (or worse).

Who really repaired my lens?

Interestingly, the UPS info listed “Nikon/Camtech Svcs” as the shipper so I am assuming that the repair work was contracted out to John Hermanson who is an Olympus guru and a one time Nikon service technician. The Nikon repair center address (Jericho, NY), Nikon USA Headquarters (Melville, NY) listed on the invoice, Camtech Svcs (Huntington, NY), and the UPS facility that picked up the package (Uniondale, NY) are all within a few miles of each other on Long Island.

About that camera strap…

Immediately after I dropped it, I checked all the straps on my cameras to see which of them are vulnerable to having the strap come loose from the adjustment buckle. The strap that came with the Rolleiflex Hy6 is the only other strap I have that does not have the strap stitched to the buckle. The OP/TECH strap that I use on my Hasselblad is stitched, as is the strap that came with the Leica M-A. My Ape cases also have stitched straps, although I had to stitch the strap on the oldest Ape case myself. I have since also stitched the strap on the Hy6 as well as the Nikon strap that started this whole chain of events. I hand-stitched them with doubled tough polyester thread and coated the stitching with epoxy to ensure the stitching would never fail.

Strap made secured to the buckle with stitching covered on both sides with JB Weld epoxy.

I did consider replacing the straps with newer ones, but I wasn’t very impressed with what’s out there today. Most stitched straps were very long, apparently to double as a neck and shoulder strap and I just didn’t like the fasteners or the general configuration. I just like the straps I already have,

Lesson to be learned

Check your camera straps and don’t drop your camera. It’s a little embarrassing that I let this happen to me, especially after having been so concerned about the strap on my Ape camera cases a couple years ago.

Darkroom Tour

While testing my recently acquired Hasselblad 501CM, I shot some pictures of my darkroom using the 40mm lens. The shots were hand held on TMax 100, so the depth of field was not great due to wide aperture, but it was as good a subject as any for test shots. This article simply puts those shots to use by explaining my darkroom setup. I like looking at pictures of other people’s darkrooms and I suspect I’m probably not alone. Darkrooms used to be so common that they were simply taken for granted. Now, being so rare, they seem to be more interesting. People who own classic cars like looking at pictures of other people’s classic cars, right? For me, my darkroom is like a time machine taking me back to the 1960s and 70s.

Below are the three pictures to which I have added numbers. Below the pictures I describe what the arrows are pointing to. Everyone with a darkroom arranges it to suit their preferences, so I am not presenting this as any kind of recommendation. The image files are about 3.5MB. If you click on them, they should open in your browser to full size, so you can zoom in. Note that many of the same items are identified in both pictures 2 and 3. The room measures 10′ x 12′ with the countertops running along the longer dimension. I should also note that the countertops are 30″ deep instead of the typical 25″ depth found in most kitchens. Since they are low cost and fabricated to order, you can specify the depth. The 30″ depth is needed for larger developing trays. The downside is that selenium toner stains laminate tops, but I’ve recently discovered a remedy for that!

My Darkroom, Picture 1: The “wet” side.

Picture 1 Legend

  1. Paper developing working solutions. Stored in 1 gallon large mouth bottles so I can pour chemicals back into the bottles from the trays without the need for a funnel. No funnel, means you can pour very fast, especially useful for single tray developing which I do for 16″x20″ and 20″x24″ size prints. Items 2 – 6 below all refer to these print developing chemicals.
  2. D-72 developer. I track developer usage with hash marks on the label. I mix my own D-72 by the gallon in a 1+1 dilution ever since Kodak transferred its photo chemical product line to a UK company and the Dektol that I had used for decades mixed up looking like frothy coffee. I now mostly steer clear of Kodak branded chemicals and use any product labeled “New Formula” for target practice at the local shooting range.
  3. Indicator Stop Bath. I use it until it starts to turn color.
  4. Rapid Fixer. I use two rapid mixing baths (no hardener). I track the usage with hash marks on the label. I think this method is described on the data sheets for both Kodak and Ilford rapid fixers.
  5. Hypo Clearing Agent. I use it only when printing on FB paper and mix it up fresh before a session. I use the first HCA after fixing and the second HCA after toning. Since I’ve only been printing 8×10 FB prints lately, I only mix up a liter for each.
  6. Selenium Toner. I use it at a nominal dilution of 1:20. Aside from when I first mix it up, I never know exactly what the dilution is because I replenish it as I use it based on its effect and smell. I find that adding 2 ml per 8×10 is a good baseline. I used to only tone FB prints as part of my standard archival processing routine but now I tone all RC and FB prints because the deeper blacks make the prints look better.
  7. Two 1 gallon jugs of tap water. I keep tap water handy at room temperature for rinsing film between developer and fixer. It’s just easier (I am one lazy mofo) than checking the temp of the water coming from the tap which can be too cold in winter and too warm in summer. The temperature of my darkroom is 71F year round, so all the chemicals are also 71F.
  8. Paper developer timer. I like this timer, but I also modified it with automotive glass tinting film to reduce the brightness and orange filter material just to make it more darkroom friendly than it already was. I only use it with the safelights on, so it doesn’t have to be very bright.
  9. 12″x16″ Paterson trays. I would prefer 11×14 trays for 8×10 prints, but Paterson doesn’t make that size and I like these trays because of the well designed pour spout in the corner which allows me to pour the chemicals back into their respective large-mouth bottles very quickly without making a mess. For larger prints, I also have the 16×20 and 20×24 version of these trays, also because of the pour spout. On some trays (Yankee comes to mind), the pour spout is terrible. I’m guessing the designer has never poured any liquid out of the tray he designed, just like the guy who made the design improvements to the Yankee bullet-shaped safelights never had to actually use them.
  10. Metal Tongs. These are good tongs. They stay springy and don’t damage prints. Like everything that I worry will someday go out of production, I have extras.
  11. Film chemicals. These are almost all film developers that have been decanted into smaller containers. I have some Ilfotec HC from 2013 which still works like new. I don’t really use it for anything, but I test it every now and then just because I’m curious which of us will outlive the other.
  12. Raw chemicals. I don’t use them very often, but when I find something I might want to try, I’ll often buy the chemicals so I’ll have them in case I ever do. I have experimented with several film and paper developing formulas as well as bleaches and toners.
  13. Liquid measuring devices. Graduated cylinders, measuring cups, funnels, spoons, eye droppers, syringes, etc. Measuring containers suffer from the same design flaws as trays in that the pour spout often allows the liquid to run down the outside of the cup. I’m fully aware that I may be the only darkroom owner on the planet who obsesses over little shit lie this.
  14. Print bleaching board. This panel swings down to an incline over the sink for bleaching prints. It has a laminate surface and aluminum edging. It also has a little sign that reads, “CAUTION! This board is heavy! It will hurt a lot if it falls on your head!”
  15. Premier 8″x10″ amber “OC” safelight. This is from back in the days when you could still buy high quality OC safelights brandy spankin’ new. I use OC safelight when I am printing pictures.
  16. Premier 5″x7″ red safelight. Red safelights are still available new. I use red safelights for developing otho litho sheet film for contrast masks. Why would they stop making OC safelights and keep making red safelights? I suspect it was yet another decision made by someone who’s never seen the inside of a darkroom.
  17. Articulated desk lamp. This was originally intended for use with the bleaching board, but it’s become the light I use now whenever I’m too lazy to walk all the way over to the wall switch to turn on the overhead lights.
  18. Room thermometer. This tells me whether the darkroom is 71F or 72F which seems to be the total temperature variance of the room. Kudos to whoever designed central heating and cooling. We have three heat pumps in my house. No one is allowed to change the setting on the one that controls the darkroom. NO ONE!
  19. Cordless telephone. I added little black flaps to this phone that cover the buttons and display screen so it doesn’t emit any light if someone calls unless I flip up the flap to see what robocaller is bothering me this time.
  20. Fixer timer. This timer is also modified using automotive window tinting film to make it dimmer. The time is set to either 30 or 60 seconds depending on whether I’m printing on RC or FB paper. It has a power switch but the display turns off by itself after a few minutes, so I leave it powered on all the time. That way it remembers the time so I don’t have to set it. I have lazy down to a science. Fixer gets its own timer because, with the two bath method, I have to use it twice for each print. Haha! Just kidding. I’d still have a dedicated fixer timer even if I used only one fixing bath.
My Darkroom, Picture 2: The “dry” side from the north.

Picture 2 Legend

  1. Omega 4″x 5″ Chromega enlarger. This has the tall column which, like the table it is mounted to, is bolted to the wall for stability. This part of the house has a slab foundation, so it’s pretty rigid. I’ve had this enlarger since the 1990s and have done B&W and Cibachrome printing with it.
  2. Dodging wands. I often make custom dodging and burning tools on the fly for a specific image. I label them with the negative number and print size and store them in a draw where I never use them again because who wants to look through a draw with hundreds of poster board shapes when it’s easier to just make a new one?
  3. RH Designs Stop Clock Timer. For Chromega enlarger. Maybe the most thoughtfully designed darkroom timer ever made. When I first bought it, I thought it was expensive. Now I think, considering how well designed it is, I consider it a bargain.
  4. RH Designs Zonemaster II. For Chromega enlarger. I could say the same for the Zoenmaster as I did for the Stop Clock. Both devices reduce trial and error attempts to get a perfect print. They will make your prints better because they will get you to a nicely exposed print before you get frustrated and settle for something less than perfect. Side benefits are that they will also make you easier to live with and reduce your use of profanity.
  5. Dahle 552 20″ paper trimmer. This comes in handy for cutting large photo paper down into smaller sizes from which test strips can be cut. I bought a smaller 12″ guillotine-style cutter on ebay strictly for cutting 2″ x 5″ test strips which are usually fine for printing 8x10s. For larger prints, I may do test strips in multiple places in the image space to sample all the important tones.
  6. Enlarger selection switch. Since I have two enlargers (diffusion and condenser), I also have two timers, each of which automatically shuts off the safelights during focusing or exposure. This switch simply connects the safelights to whichever timer I’m using.
  7. Stop Clock Timer. For Condenser enlarger. See item 3 above for description.
  8. Refridgerator. I use this mostly for film, but I also refrigerate Xtol type developer in 16 oz glass bottles. I’ve found that the developer has a longer shelf life if kept cold. Since this fridge has no freezer, I never have to defrost it. Defrosting is an objectionable task for people with stage 4 laziness such as myself.
  9. Enlarger bases. These are removable table tops associated with the Condenser enlarger. Since the ceiling limits the height to which I can raise the enlarger head, I can effectively lower the base by removing upper level tabletop(s) and placing the easel on a lower level. Generally, the only time I do this for extreme cropping. I can project all the way down to the floor.
  10. 16″x20″ Saunders 4-blade easel. This is their conventional (not the V-Track) easel. For the occasional 20″x24″ print, I have a home built easel without adjustable blades.
  11. Zonemaster Meter. For Condenser enlarger. See item 4 above for description.
  12. Door mounted exhaust fans. You can only see one in this picture, but I have two 8″ fans mounted on Doran light tight vents on the door. They just blow air out of the darkroom into the adjoining “frame shop”. Yeah, I probably wouldn’t be the first person anyone would hire to design a safe biochemical research facility, but aren’t toxic fumes part of the charm of chemical based hobbies?
  13. Omega 4″x 5″ DV condenser enlarger. This enlarger has the short column. The base is mounted in a slightly elevated position on a wall mounted shelf/bracket with a wall mounted top brace. When raised to the top, the lamp house just touches the ceiling and I have to stand on a step ladder to swap out the 6×6 contrast filters. One of the main reasons I have been using this enlarger for recent work is because I like having contrast filters above the negative.
  14. Yankee Bullet-shaped safelight. This safelight, as purchased new, is unusable for anyone able to recognize that a translucent white plastic enclosure for a safelight is a bad idea. But, it can be modified to work.
  15. Pre-flashing lamp. This is just a coffee can with an incandescent nightlight bulb mounted inside and a small filter frame on the open end facing down. The filter frame holds a #00 Ilford contrast filter and a UV filter from a Cibachrome color filter set. Pre-flashing a sheet of phot paper simply raises the sensitivity of the paper so that less additional light light is needed to create a very light gray tone. This tends to alter the foot of the paper sensitivity curve such that highlights can be more easily printed without washing out to pure white. I do this quite often when I want to maintain contrast in the mid tones while still having some detail in bright highlights. The secret is to always keep the pre-flash exposure time short enough so that it doesn’t, by itself, fog the paper. I control the exposure with the timer described in item 22 below.
  16. Premier 5″x 7″ amber OC safelight. I added this safelight when I started using the condenser enlarge became my primary printing station. That corner was quite dark and it’s difficult to shade a test strip for multiple exposures when you can’t see it. Later I added another safelight (item 14 above) to make it even easier to see. Despite having two safelights pointing down at the easel, it is still not very bright. I tend to err on the dim side for darkroom lighting.
  17. Speakers (only one is visible). I have speakers for the sound system (item 20 below) mounted above the door at each corner of the door frame. I have an identical pair of speakers mounted above the door in the same place except facing out into the frame shop. They are wired so the left and right stereo channels don’t change sides when I walk out into the frame shop from the darkroom.
  18. Premier 5″x7″ red safelight. Red safelights are still available new. I use red safelights when exposing and developing otho litho sheet film to make contrast masks. They are not controlled by teh enlarger timer and, therefore, not turned off contrast mask exposures. The red safelights are off when I’m doing normal printing.
  19. Premier 8″x10″ amber “OC” safelight. Last time I tried to by one of these, I couldn’t find them available new. I use OC safelight when I am printing pictures.
  20. Sounds system. This is an old 5.1 home theater sound system that I use to play music or podcasts from my little mp3 player or from my tablet. I use it in stereo mod, with the left and right channel each having two speakers wired in parallel. One pair of speakers is in the darkroom and the other pair are in the adjacent frame shop. You can see that the subwoofer is also in the darkroom. For podcasts I tend to use a bluetooth headset since my hearing isn’t that great anymore.
  21. Safelight power strip. All the orange safelights in the darkroom are controlled by whichever Stop Clock timer is in use. To be accurate, the enlarging meter (item 4 above) require that all the safelights be turned off when making exposure measurements. Power to these outlets is supplied from the enlarger selection switch (item 6 above).
  22. Pre-fash exposure timer. This is a GraLab model 300 timer. I keep the face of it covered with black poster board when I’m not using it because the green glow-in-the-dark dial seems very bright when it’s “charged up” by the white room lights. It controls the pre-flash lamp (item 15 above). I do pre-flashing often, so a dedicated lamp and timer are warranted.
My Darkroom, Picture 3: The “dry” side from the south.

Picture 3 Legend

  1. Large liquid measuring devices. These include taller items like graduated cylinders and measuring cups up to 5 liters. I also have a water spray bottle up there for wetting the paper take that I use to tape wet FB prints to glass to dry.
  2. Glass chemical storage bottles. These are new unused glass bottles that are used to decant developer concentrates and working solutions so that most of my chemicals are in full tightly capped bottles to ensure a long shelf life. I also use plastic (PET and LDPE) bottles, but in my experience, glass is a much better oxygen barrier.
  3. Black foamcore. I put this up to reduce white light from the easel being reflected back down from the ceiling. I did it on a whim without any reason to believe it was actually even a real problem. Since I started using Zonemaster meter, I am confident that that light scatter is not a significant issue in my darkroom.
  4. Yankee Bullet-shaped safelight. This safelight, as purchased new, is unusable for anyone able to recognize that a translucent white plastic enclosure for a safelight is a bad idea. But, it can be modified to work.
  5. Room thermometer. This tells me whether the darkroom is 71F or 72F which seems to be the total temperature variance of the room. Kudos to whoever designed central heating and cooling. We have three heat pumps in my house. No one is allowed to change the setting on the one that controls the darkroom. NO ONE!
  6. Cordless telephone. I added little black flaps to this phone that cover the buttons and display screen so it doesn’t emit any light if someone calls unless I flip up the flap to see what robocaller is bothering me this time.
  7. Grabber/Reacher and fly swatter. The grabber is to reach items on high shelves. The shelves go up to the ceiling in the darkroom and I’m only 5’8″ tall. The fly swatter is because I live in Alabama and apparently a lot of flies also live here. Flies are not welcome in my darkroom (or anywhere else in my house).
  8. Omega 4″x 5″ Chromega enlarger. This has the tall column which, like the table it is mounted to, is bolted to the wall for stability. This part of the house has a slab foundation, so it’s pretty rigid. I’ve had this enlarger since the 1990s and have done B&W and Cibachrome printing with it.
  9. Metal rulers. These are various lengths (12″, 18″, 24″, 48″) and are used as general purpose straight edges. One of them is a thick aluminum straight edge for cutting glass.
  10. My old paper safe. This is just a wood box with shelves inside. The inside is black. I’ve used this as a paper safe for decades and can honestly say that it is a really crappy paper safe. I have since built a new paper safe.
  11. Borderless easels and plexiglas sheets. I can’t remember the last time I used a borderless easel. I used the plexiglas sheets to cover stop bath and fixer trays when I take a break from printing that I expect to last for more than a half hour or so. I cover the developer tray by floating an identical tray on top of the developer surface like a floating lid, which prevents oxidation. I also cover my fixer tray when I tone prints which I do immediate after I print each picture. It eliminates the possibility of toner splashing into the fixer which is something I try to avoid for reasons I can no longer remember. I never leave chemicals in the trays over night.
  12. My new paper safe. This consists of two drawers, one above the other. Best paper safe I’ve ever had.
  13. RH Designs Stop Clock Timer. For Chromega enlarger. Maybe the most thoughtfully designed darkroom timer ever made. When I first bought it, I thought it was expensive. Now I think, considering how well designed it is, I consider it a bargain.
  14. Dahle 552 20″ paper trimmer. This comes in handy for cutting large photo paper down into smaller sizes from which test strips can be cut. I bought a smaller 12″ guillotine-style cutter on ebay strictly for cutting 2″ x 5″ test strips which are usually fine for printing 8x10s. For larger prints, I may do test strips in multiple places in the image space to sample all the important tones.
  15. Enlarger base. The upper table top for the Chromega (diffusion) enlarger is removable. By removing the table top and placing the easel on a lower level I can do more extreme cropping when it’s called for.
  16. Step stool and kneepad. The 6″ step stool is handy for reaching high shelves while the kneepad is for when I’m using the lower tables (or the floor) for printing. To look through a grain focuser when the printing easel is only a few inches off the floor I have to be kneeling on a very hard floor.
  17. Dish drying rack (barely visible). It where I place bottles, tanks, reels, and measuring cups to dry after they’re washed.
  18. Refridgerator. I use this mostly for film, but I also refrigerate Xtol type developer in 16 oz glass bottles. I’ve found that the developer has a longer shelf life if kept cold. Since this fridge has no freezer, I never have to defrost it. Defrosting is an objectionable task for people with stage 4 laziness such as myself.
  19. RH Designs Zonemaster II. For Chromega enlarger. I could say the same for the Zoenmaster as I did for the Stop Clock. Both devices reduce trial and error attempts to get a perfect print. They will make your prints better because they will get you to a nicely exposed print before you get frustrated and settle for something less than perfect. Side benefits are that they will also make you easier to live with and reduce your use of profanity.
  20. Enlarger selection switch. Since I have two enlargers (diffusion and condenser), I also have two timers, each of which automatically shuts off the safelights during focusing or exposure. This switch simply connects the safelights to whichever timer I’m using.
  21. Pre-fash exposure timer. This is a GraLab model 300 timer. I keep the face of it covered with black poster board when I’m not using it because the green glow-in-the-dark dial seems very bright when it’s “charged up” by the white room lights. It controls the pre-flash lamp (item 15 above). I do pre-flashing often, so a dedicated lamp and timer are warranted.
  22. Various small scales. These are used for weighing small amounts of dry chemicals for mixing various photo chemicals (developers, toners, bleaches, etc.). Some have a resolution of 0.01 g and others read in increments of 0.1 g. On the very top shelf there is a larger scale for weighing up to 50 lbs.
  23. Enlarger alignment thingamabob. This is a little 3D printed device to which a standard rail-mounted laser sight is attached. By placing on the easel under your enlarger, you can adjust the lens and negative carriers to perfectly parallel to the plane of the easel. The laser beam is precisely perpendicular to the easel and you can tell when the lens board and negative carrier are parallel when the laser beam is reflected back down into the laser projector.

Hasselblad: My Latest Film Camera Shopping Spree

Hasselblad 501CM, PME-5 Meter Prism, 40mm CF, and 100mm CF.

If you read the blog entry about my experience buying a new Rolleiflex Hy6 a few years ago, then you already know it was not a pleasant affair. I have been able to fix or work around the Hy6’s multitude of problems and I do use it, but it’s not a system I will be investing any more money in. The automation of the Hy6 is wonderful, but questionable reliability, lack of domestic repair options, and scarcity of indispensable accessories like film backs makes it a poor choice going forward.

In the past, I had done some research into Hasselblad and Bronica SLRs, so I wasn’t jumping into it cold. I was impressed by both systems, but ultimately decided to go with the Hasselblad V-series. It has an excellent reputation, a full line of Ziess optics. a large user base, is readily available in quantity from multiple sellers on the used market, and can be serviced by a number of domestic repair facilities.

What to Buy

I quickly narrowed the search to either a 501CM or a 503CW body which are newer members of the V family and have a few improvements over earlier models that are nice to have, but not essential. Also on my shopping list was a meter prism, a waist level finder and an A12 film magazine. I planned to start with two lenses. Since the 40mm lens for my Hy6 was recently declared unrepairable (at least domestically) due to the unavailability of parts, I decided that I would definitely be getting a 40mm Distagon lens for the Hassy. I also decided against getting the usual 80mm kit lens since I already had an 80mm lens for the Hy6. Instead I decided on the 100mm Planar lens which has impressive MTF curves. I went with CF rather than C lenses because I didn’t want lenses that were more than 40 years old. I can see myself getting a 60mm lens in the future.

Where to Buy

I gave a lot of thought about how to mitigate the risks of buying used equipment. In the end, I settled on buying everything from KEH in Atlanta for multiple reasons.

  1. They had everything I wanted.
  2. They have a 6 month warranty and an in-house repair facility.
  3. Having a sizable inventory, they are able to replace an item if it falls short of expectations.
  4. They have a 21 day return policy.
  5. They have a generally good reputation and I’ve had good experiences with their repair shop.
  6. They are are domestic, so they are subject to US law.
  7. They sell on ebay and with feedback from >100,000 transactions.

There are two downsides to shopping at KEH:

  1. First, they don’t provide actual pictures of items for sale, instead opting to use generic pictures of the product. For me, that was not a trivial shortcoming, but it was outweighed by the benefits. Given their large inventory and turnover, I can understand why they don’t provide a full batch of pictures of every individual item. Furthermore, I also don’t think pictures of the actual item are a substitute for a good reputation and a buyer friendly return policy.
  1. Second, they don’t list serial numbers for camera bodies and lenses, so you can’t look them up and find out how old they are. This can be helpful if it allows you to determine whether an item is ten years old or 30 years old. An older item may be more likely to need service for decaying seals or gummy lubricants. But, not all manufacturers provide a means to cross-reference serial numbers with manufacture date, so this is limited only to some brands.

I am not suggesting that KEH is the only reliable source of used analog equipment. Hasselblad is one of several MF systems where used equipment is plentiful and available from numerous reputable sellers with hassle free return policies. Competition is our friend. But, for the equipment I was shopping for, KEH offered several options for each item on my list, with different price point and condition ratings. No other seller I looked at matched KEH in that regard. They must have a considerable inventory.

Buying used carries a risk that the camera may have problems and may need service the moment it arrives. Sellers often don’t recognize defects in items they sell or hope the buyer won’t notice them. With their in-house repair facility KEH has the capacity to rectify such problems should any arise.

Other used equipment sellers include Roberts Camera (UsedPhotoPro), Samy’s Camera, and Cambridge World (which also has a repair shop, but doesn’t appear to list condition ratings on many items). If you buy pricy equipment direct from any merchant, I recommend you check that seller’s feedback from buyers on ebay. If they don’t sell on ebay, it may be because they’re unwilling to comply with ebay’s customer protection policy.

One thing I made up my mind not to do is purchase from Japanese sellers on ebay. I’ve seen too many of their listings where they rate a product as EXC+++++, but then note that lens haze, which can easily render a lens useless, does not factor into their condition ratings. While many accept returns, dealing with international shipping and customs just increases the cost, risk, and hassle of returning an item. Furthermore, many Japanese sellers have limited buyer feedback, which makes me think they just create new accounts when they get too many bad ratings. While some buyers swear by them, buying from Japan is not for me when there are reputable US sellers with buyer feedback in the tens or hundreds of thousands.

Pulling the Trigger

The Hasselblad 501CM, accessories, and lenses that I ordered were well packed, arrived quickly, and all worked right out of the box. I made it a point of selecting items that KEH had rated EX or better. I wasn’t bargain hunting. I was willing to pay for items that, while not perfect, were in good working order.

The only problems I encountered were a somewhat stiff focus on the lenses and slightly sticky mirror-up button on the body. The mirror up button loosened up within a few frames and hasn’t reoccurred since. The focus on the 40mm lens now turns quite smoothly just from use since I got it. The 100mm lens is still stiffer than what I’m used to, but not enough to warrant sending it in for a CLA. Cosmetically, I was pleased with everything the moment I unpacked it. I couldn’t have expected it to be in better condition if I had owned it myself. After several days of rigorous testing, I was unable to find any functions that didn’t work. That was impressive and it suggests KEH is better than average at rating the condition of items they sell. It was the exact opposite of the experience I had with the factory fresh Rolleiflex Hy6 in 2020.

  • The body, lenses, and accessories looked nearly new, inside and out.
  • No light leaks.
  • The film back didn’t scratch the film.
  • The focusing was spot-on and out to infinity at full aperture.
  • The frame spacing is even with no overlapping frames.

I went through several rolls of film hunting for defects. There were none.

About Focusing Screens

The 501CM camera body came with a 42204 Acute-Matte D focusing screen which has no focusing aids. During the focus testing phase, I ordered a BrightScreen with microprism and split image focusing aids specifically because the 40mm lens has such extreme depth of field that it’s hard to focus precisely even on a flat contrasty target for focus testing purposes. While I prefer the Acute-Matte D over the BrightScreen for viewing, the focusing aids are indispensable for me. Ideally, I’d like to get an Acute-Matte D with focusing aids such as the 42215 or 42217, but they are outrageously expensive compared to the $100 BrightScreen. The BrightScreen is not a bad screen, by any means. It looks very similar to the screen that came with My RB-67 Pro S that I used without issue for decades. Also, the BrightScreen with the supplied shims, focused identically to the Acute-Matte. I couldn’t have been happier about that.

Bottom Line

I thought long and hard about how to reduce the risk of buying used equipment. For expensive items, I have limited my ebay purchases to reputable domestic sellers that accept returns and have a well established track record. I have also lowered my expectations of getting an item in good usable condition at a bargain price. I am now willing to pay more to get more.

A merchant who plans to be in business for the long term protects his reputation by pleasing customers and nurturing repeat business. There are good arguments for buying from KEH and, as long as they are a reliable seller with a commitment to customer satisfaction, I will continue to shop there. The worst thing you can do is just assume a seller is honest and hope for the best.

This is, of course, just one man’s opinion.

First Pictures From The Hasselblad

After shooting a few test rolls of film to check shutter seeds, apertures, focusing and other functions on the 501CM, I took it on a local outing in downtown Huntsville, Alabama. While I took both the 40mm and 100mm lens, the only lens I used was the 40mm. While optically not as good as the later (and much more pricy) Hasselblad IF CFE lens, it has about half the distortion. Since I shoot urban landscapes and Photoshop can’t fix a darkroom print, straight lines are important to me. One setting if the FLE covers the range of 2 meters to infinity, so I didn’t find much need to change it for the kind of shooting I do.

Need I mention that Hasselblad doesn’t make any cockamamie claims that their lenses are only designed to focus out to the hyperfocal distance?

Below are a few shots from that excursion. All are scans of darkroom prints with 8″ x 8″ images on Ilford Cooltone RC paper from Tri-X and Delta 400 negatives developed in Ilfosol 3 (my first experience with that developer).

The Perfect Paper Safe

My darkroom paper safe has, for decades, been a small DIY wood cabinet with some shelves inside. I have never trusted it to be light tight, so I kept all the paper and test strips stored inside in black plastic envelopes like the ones paper and film are packaged in. The hinged door was held closed with a window latch. Although it’s large enough for 11″ x 14″ paper, I never put any paper larger than 8″ x 10″ in it. In fact, I practically never use 11″ x 14″ paper. This was no one’s idea of a perfect paper safe and I wanted something better.

My Old Paper Safe

The Research Phase

I wanted something that made access to the paper and test strips as easy as pulling it out of a drawer. As with all such projects, I started with research on the internet.

There is a nice drawer based design by Kenneth Wells in a 1971 issue f Popular Science.

A very attractive and practical DIY based design by Reinhold Schable can be found on FADU. In fact, if you haven’t visited Reinhold’s website, re-inventedphotoequip.com, you should definitely drop by.

Page 133 of the Darkroom Cookbook (2nd Edition) has a drawer based design that is both simple and close to what I wanted.

From Page 133 of Stephen Anchell’s Darkroom Cookbook

Construction Materials Considerations

On top of the designs by others, there is a lot of discussion on the photo forums about which materials are good for building a paper safe and which are problematic. The TL;DR of it is that you should stay away from materials that contain formaldehyde. From that discussion and my own research I learned that “engineered wood” like plywood, particle board, and MDF contain adhesives that can produce chemical vapors harmful to photographic emulsions, although there is some argument that, because of new regulations, modern versions of those manufactured products have less of the harmful chemicals. It is also plausibly reasoned that water based paints are less likely to emit emulsion-unfriendly vapors than oil based coatings.

Another possible solution is to apply shellac over engineered wood and painted surfaces to block the chemical outgassing. As an experiment, I covered one half of a painted surface with shellac to see if there was any discernable difference.

Masonite primed and painted with flat black latex paint. Left (darker) side sealed with Shellac.

After the allowing several hours to dry, I held each side right up under my nose to see if I could smell any difference. I expected the shellac to smell like shellac and the latex to smell like latex, but the shellac side had no detectable smell while the latex side smelled as you would expect freshly pained latex to smell. Not a very scientific test, but it certainly dampened my skepticism. A downside to the Shellac is that it leaves a glossy finish (making it look darker in the picture above). I prefer a flat finish for light proofing in order to minimize reflections.

In any case, I condensed that research down to a decision to avoid those products altogether and stick with ordinary wood and Masonite (hard board) which, I was surprised to learn, is made with pressure and water, rather than adhesive chemicals. I also decided to stick with water based paint and glue and allow at least a couple months of outgassing of any acrylic or latex binders before trusting it to safely store photographic paper.

Pictures of the Project

For anyone interested in seeing the actual construction of the paper safe, I took many snapshots during the six weeks it took me to complete the construction, painting, and installation in my darkroom. You can view those pictures on my CityShadows.org website here.

Features and Design

The design requirements were as follows:

  • Drawer based operation.
  • No cover to lift up or slide back to access the paper.
  • Must fit the space I had planned for it.
  • Sized to hold 8″ x 10″ and 16″ x 20″ paper.
  • Drawers should open fully, so the interior is fully accessible from above.
  • Must close and stay closed reliably without a latch.
  • Extracting individual sheets of paper must be fumble free.
  • The project had to be something I had the skills and tools to build.

Basically, I was envisioning a drawer with a stair step front that would mate with a stair step cabinet, thereby creating a light trap. There would be two equal size drawers with dividers as necessary to create compartments for 8×10, 16x20s, and the associated test strips. I use 2″ x 5″ test strips for everything. I began the design as a LibreOffice Drawing which was fine to render the simpler aspects such as the divider layout.

LibreOffice rendering of interior dividers for 8×10 version of drawer.

For the more complex light trap features, I quickly realized that the complexity was going to need the 3D features of a CAD program, so I switched to FreeCAD which I’d used on another project. Personally, I really struggled with the learning curve for FreeCAD and am far from adept at using it, but once you’re done, you can view and rotate every piece and how they fit together. You can also see immediately if the component parts can be practically crafted with the available tools and materials.

Cabinet frame showing the stair step design where the drawer front will mate to create the light trap.
Drawer frame showing the stair step design of the front panel that mates with the cabinet.

Construction

A major part of the reason for taking on this project now was because I had recently purchased a table saw which permitted more precise cuts than I was able to do previously. The CAD program spelled out the exact dimensions I needed to achieve a gap of no greater than 1/16th of an inch between the drawer front panel and the cabinet stair step geometry. I used a caliper and test cuts to achieve that level of precision. At first, I tried cutting the stair step on a DIY router table, but it was slow going and not exact enough, so I coughed up the money for a set of dado blades for the saw. That made it about 3000% easier and more precise.

I used poplar for the main framework, but used much more rigid red oak strips as supports under the Masonite floor of the 16×20 drawer. Masonite is susceptible to sagging. The poplar dividers for the 8×10 drawer are glued and screwed to the sides of the drawer and, using screws from below, act as supports for the floor of the drawer. Since the 16×20 drawer has a large area with no support from above, I raised the floor enough to place the support strips under it. This made sense because I don’t use as much 16×20 paper, so the drawer doesn’t need to be as deep as the 8×10 drawer.

In addition to the drawer floor panels, the cabinet was entirely enclosed in Masonite panels and, because the drawer front receded into the font of the Masonite enclosure, it formed part of the stair step light trap configuration.

The “Soft-Close” drawer slides I used allowed for full extension of the entire drawer and have a feature that pulls the drawer closed the rest of the way when the drawer is pushed within a couple inches of closed. That feature actually holds the drawer closed quite securely, making inadvertent opening nearly impossible. In the quiet of my darkroom, I can tell from the “thump” that that it closed completely. I also chose rounded drawer handles that could not snag on clothing and pull the drawer open.by accident.

In order to make extraction of individual sheets fumble free, I placed a wedge behind the paper, opposite from the finder access gap. The wedge is the full length of the paper and pushes the paper out toward the top of the stack. This clever self fanning feature was copied from the Reinhold design. In addition, I placed a sheet of Masonite under the paper, but slightly smaller than the size of the paper so the paper overhangs it on the finder access side. This elevates the paper by 1/8th inch off the main floor of the drawer making it easy to get my finder under the last sheet to lift it out. I should note that, since Masonite is a dark brown, I didn’t paint the floor of the drawers. Less paint means less outgassing to worry about.

One of the last construction steps was the mounting of the front panel of each drawer. The front panels were already matched to the cabinets to fit without any rubbing that would result in the black paint being worn off. The drawer front mounts to the main drawer frame with two machine screws. I glued small pieces of sand paper, to the drawer frame, rough side out, so that the front panel would not move once the screws were tightened. Using shims in the gaps around the edges, I centered the front panel and tightened the screws. There is no rubbing of the stair step surfaces against each other. The gaps aren’t perfect, but they are at least as good as I hoped hey would be.

Installation in My Darkroom

My enlarger table is home built and I designed the paper safe to fit into a space below the counter top next to my D5 Chromega. Basically, it would reside just below the table top where my old paper safe had been setting. A fair amount of customization of the table was required. My paper safe not only had two drawers, but each drawer had its own cabinet. To mount it, I installed two shelves, appropriately spaced, and used aluminum brackets to secure the cabinets to the table legs. Because each drawer is a complete unit, I can remove either one for modification or repair without disturbing the other.

The upper drawer holds two type of 8″ x 10″ paper and associated 2″ x 5″ test strips
The lower drawer holds 16″ x 20″ paper and associated 2″ x 5″ test strips

Final Thoughts

After finishing the installation, I left the drawers open for 2 months to dissipate any residual vapors. After that, I placed sheets of paper, face up, in the the drawers and developed them after several weeks to make sure there was no fogging. In actual use, I decided to place the paper face down to minimize exposure to the safelights from repeatedly opening the drawer to extract paper during printing sessions. My safelight are very safe, but reducing exposure to them is never a bad thing. In fact, I develop RC prints face down for the same reason.

Since I use Ilford Cooltone and MGIV RC 8×10 paper and Cooltone FB 16×20 paper almost exclusively, this will cover 99.9% of all my printing needs. Any other photo papers I use are stored in a cabinet in their original boxes.

Conclusion

So far, the new paper safe drawers have been working perfectly. No fogging and accessing paper is now much more convenient. Is it “The Perfect Paper Safe”? Well, maybe not, but given what I had been using, I had nowhere to go but up.

Photo Paper: Long Term Storage

Why I Did It?

When Kodak stopped producing black and white photographic printing papers, I became sensitized to the potential for my favorite papers to suddenly disappear. With Kodak papers gone, I tested other papers and settled on Ilford. But, what if Ilford stops making printing papers?

The idea of stockpiling photographic materials that have disappeared from the market is not new, but I wanted to do it in a way that assured the best chance of success, where success is defined as not running out of paper until I die. Since I was in my mid-sixties at the time, that didn’t really pose much of a challenge. I set a goal of having, at a minimum, a two year supply of paper on hand at all times. Furthermore, I wanted sizes up to 20″x24″.

How To Do It (The Research Phase)

I started this project in late 2016 and I did considerable on-line research. Unfortunately, all I have left are some notes summarizing my findings. There is not a lot of scientific testing of long term storage of unexposed silver gelatin photo paper. Why would there be when it was in plentiful supply? There is, however, quite a bit of research on archival storage of film and finished prints. In addition, I decided to conduct my own on-going tests to confirm whether I was on the right track as the years passed.

We all know that the speed of chemical reactions is reduced by lowering the temperature, so cold storage is the obvious method. Also, it’s well known that fresh photographic paper has a usable life of at least a few years at room temperature. Even old papers that have fogged can be salvaged by adding anti-fogging agents (restrainers), such as benzotriazole, to paper developers. But, I’ve also encountered paper that became fogged after only four years of storage at temps between 65 and 75F. What I was seeking is not just to avoid fog, but to maintain all the original characteristics of the paper for as long as possible.

My research discovered that, indeed, paper will last longer if stored at cold temperatures. The colder the temp, the longer it will last, at least down to 0F. Reducing the temperature has a greater impact on life expectancy than reducing humidity, but condensation must be avoided. For storage, the paper (in its standard cardboard packaging) should be placed in vapor proof laminated (Polyester/Aluminum Foil/Polyethylene) oxygen barrier bags and heat sealed with an iron. The cardboard packaging of the paper absorbs moisture at lower temps, helping to reduce Relative Humidity without drying out the product (as could be the case if desiccant packs were included).

Freezer with Initial inventory of paper & film, vapor proof bags, and wireless cold temp thermometer.

How I Did It

The first, and most costly step was the purchase of a freezer large enough to store boxed of paper as large as 20″ x 24″ lying down flat. That meant getting a chest style freezer. I decided against getting a frost-free freezer to avoid the temperature cycling that comes with the auto defrost operation. I do not know for certain that it would affect the paper, but since the freeze door is rarely opened and the relative humidity in the house is only about 40-60 percent, I don’t have to manually defrost it very often. I have a large low profile plastic storage container upside down on the floor of the freezer to keep the paper up off the bottom by about 5 inches making it slightly easier to reach down to the materials at the bottom.

Paper boxes, various size foil laminate barrier bags, and humidity indicator cards

Vapor proof aluminum Mylar bags are available on eBay in many sizes. They can be sealed quite easily with an ordinary clothes iron. Set the iron to Cotton or Wool and use it dry, so there is no steam. The sealed bags are opened by cutting off the sealed seam, but by getting larger size bags, they can be reused multiple times.

Place the paper & humidity card in bag, squeeze out as much air as possible, and seal bag with an iron.

I stocked up on the Ilford resin coated and fiber papers that I preferred (MGIV and Cooltone), created an inventory spread sheet, taped a humidity indicator card to each box (original packaging), and sealed each box in a barrier bag. When removing the frozen product, I always let it stand at least over night and cut the bag open the seal when it was at room temp to avoid any condensation. Preferably, I just remove the sealed bags as needed, but when a bag contained a 250 sheet box, I remove 125 sheets and refreeze the remainder for later. It’s important to label each bag as to what’s in it because the bags are opaque. I recorded the date code, paper type, size, receipt date, number of sheets for each bag, and the freeze date in a spread sheet. I also note if a package is thawed, paper removed, and then refrozen (Example: Removing a 125 sheet inner bag from a 250 sheet box of Ilford paper.)

Paper bagged and ready to freeze

How Will I Know If I Accomplished My Goal?

As a monitoring scheme, I placed several 8″ x 10″ sheets of Ilford MG IV RC paper (Date Code: 33C504C60, Rcvd 10/6/16) in a paper envelope, sealed the envelope in a barrier bag, and then subjected it to several freeze/thaw cycles over time, occasionally removing one of the sheets and testing it by making a 5″ x 7″ print of a particular negative with a tightly specified enlarger setup using fresh Dektol developer. Additionally, using the remainder of the 8″ x 10″ sheet, I contact print a step wedge using #00, #2, and #5 contrast filters. I compare the resulting print and step wedges against a control which was made on a never-frozen sheet of the same paper in February 2017 when I first began actually freezing paper. My latest test was done in October 2022. So far, the results have been visually identical.

When ready to use, the 8″ x 10″ monitoring sheet is cut into a 5×7, test strips, and step wedge strips.
Test print and step wedge strips from 2017 to 2019 (pink stain on countertop is from selenium toner)

Orange “OC” Safelights Are As Rare as Unicorns

The Availability of High Quality Affordable OC Safelights is Dwindling

If you’ve done any safelight shopping these days, you’ve probably noticed that new OC colored darkroom safelights aren’t as plentiful as they once were. Lights with red filters seem to be much more common, but the orange ones are easier on the eyes and make darkrooms seem brighter.

Being Adventurous (Buying Cheap)

When I recently decided to add a couple small safelights to my darkroom, I settled on the Yankee bullet-shaped Circular Safelight available at B&H Photo for $32.95. After reading the reviews, it was clear that whoever took over Yankee photo products manufacturing had probably never stepped foot inside a darkroom. This safelight is made from white plastic that is not opaque and by no means “safe”, so I knew it would require some modification.

When I received them, I tested them out and, sure enough, the enclosure glowed with unfiltered light. Furthermore, the “amber” filter was more rad than amber. I lightly sanded the housing, taped over the threads on the housing and lock ring, masked the screw-in metal base, and spray painted the entire exterior with several coats of flat black paint. I covered the label with black electrical tape. No white light was going to escape it after that.

Yankee Safelight Before and After Painting

My experimentation showed that, with a 15 watt bulb, the supplied filter would easily and noticeably fog Ilford Cooltone RC paper at a distance of 4 feet. But, testing a safelight involves more than just exposing a piece of paper to the safelight and then developing it to see if it has turned gray. Photo paper characteristics can be altered by exposure to light that is not strong enough, by itself, to cause a visible gray tone upon development.

What Constitutes a Truly Safe Safe Light

Pre-flashing, a common technique used to pre-sensitize paper so that, when exposed in the enlarger, very dense areas of a negative will show texture where it might otherwise have been completely washed out. But, pre-flashing is something you want to control and do only as needed. You certainly don’t want your safelights doing it for you.

If you want to be confident that your darkroom safelights are safe, there are methods for doing so. Recommendations for testing are available from Ilford and Kodak. The secret is to make sure that your safelight will not noticeably darken very light image tones on the paper you use when exposed to that safelight for the worst case time and distance for your working habits and environment.

I’m a bit obsessive with regard to safelights because I use the pre-flashing technique routinely and I don’t want to worry about rushing my work in order to minimize exposure of printing paper to the safelights. The “amber” filter supplied with the Yankee safelight wasn’t going to cut it, so I began experimenting using Rosco theatrical lighting filters.

How I Made a Terrible Safe Light Into a Very Good Safe Light

When my testing was complete, I settled on a stack of Rosco filters and used a 7 watt bulb instead of the recommended 15 watt bulb. Using the original plastic filter as a template, I cut the Rosco filters to fit inside the locking ring, taped the filter stack with small pieces of Scotch tape, and then secured them to the front of the Yankee safelight housing with the locking ring. After much experimentation I decided on the following stackup of filters:

Modified Yankee Safelight Ready to Assemble
When Taped, the Filters Fit Like a Drum

I tested the this stack up by placing a pre-flashed test strip under the safelight at a distance of 42″ with all my other safelights turned on as well for ten minutes. The bulb I used was a General Electric 7 watt S11 medium base “night light” bulb. Based on my experimentation, I assume it would be safe for longer, but 10 minutes was already beyond what I expected the paper to ever be subjected to based on my workflow.

A few additional Observations

The brightness can be adjusted by changing the strength of the neutral density filter. I found through experimentation that stacking Rosco ND filters is not the same as using a single stronger ND filter. Their filtration is not uniform over the entire spectrum and stacking them will exaggerate that variance. While you may not see a difference in color with the naked eye, a digital camera will reveal a stark difference (at least it did for me). In lieu of an ND filter, you can reduce the light output by partially covering the front of the safelight with a piece of opaque material to reduce the total light output. Covering half the area, reduces the light output by half.

I don’t think the diffusion material is necessary, but removing it will probably increase the light output.

A Cheap Lamp Holder and Cannibalized Extension Cord Completed the Installation

For one of the safelights, I used a handy socket extender that rotates and bends to direct the light where you want it.

Articulated Lamp Socket Extender is a Handy Addition

Finally, yes, this was more work than I anticipated, but I already had the filter material on hand and the the safelights now suit my needs perfectly. My 10′ x 12′ darkroom uses three of the old box style Premier Safelights, but I wanted a couple of small safelights to brighten the dark corners. I couldn’t find any of the 5″ x 7″ or 10″ x 12″ OC lights that used to be so common, so these were the lowest cost option. I didn’t want to have different colored safelights in my darkroom. I wanted them all to be orange. By the way, I considered the Brightlab OC safelight, but some of the reviews indicate that it too is far more red than amber.

Defective Right Out of the Box

Serious Quality Control Failings with New Rolleiflex and Leica Film Cameras

Leica M-A and Rolleiflex Hy6 Mod2

I have never been able to afford high end German cameras, but I always wanted one. Almost all the cameras I have owned were from Japanese companies like Nikon, Minolta, and Mamiya.

Finally, in October 2020, being retired and having some cash available, I purchased a new Rolleiflex Hy6 Mod2 system from the US distributor and a new Leica MP and lens from Camera West. Since 1966, I have purchased many cameras, new and used, but these two recent purchases were the first time I ever bought a camera that was defective right out of the box. The Rolleiflex wouldn’t focus correctly and the Leica MP meter wouldn’t automatically turn off after the time-out. These were also the first cameras I purchased that included little cards, signed by hand, letting me know how committed the manufacturer was to reliability.

Personally signed quality control assurance cards

Long Story Short: Rolleiflex Hy6

Rolleiflex Hy6 with 80mm, 50mm, and 40mm lenses

Seven days after receiving it, I sent the Hy6 to DW Photo in Germany and, within 3 hours of Fedex delivering it to them, they sent me an email declaring that I had an incorrect menu setting on the camera. After arguing with them for a few weeks, I paid the bill of 320 € to get it back. After receiving it back, I confirmed that the camera still wouldn’t focus, but it turned out that someone much smarter than me on the Photrio forums had the identical Hy6 focusing issue and corrected it by adjusting the film pressure plate position. In fact, the serial number on my film back differed from his by a single count, so they were likely assembled at the factory on the same day. Thanks to him, I was able to repair my Hy6 the same way.

Rolleiflex Hy6 6×6 Film Back

Think about it: If not for “that guy on the internet”, I would be stuck with a very expensive paper weight. Since then, myself and others have discovered other issues in common with our Hy6 cameras. These include light leaks, film transport issues, scratching of film (which defies solution to this day), and the interesting claim from Rolleiflex that 6000 series and Hy6 lenses are not designed to focus out to infinity, but only as far as the hyperfocal distance. As far as I know, Rolleiflex is the only high end camera manufacturer that lays claim to that unique feature (or bug, depending on whether you want distant objects to be sharp in your images). One recent Hy6 seller on ebay noted in the description that the focus “is soft at infinity at any aperture wider than f/11ish” and that’s after having had the pressure plate adjusted at the factory soon after buying it in late 2020.

Long Story Short: Leica M-A

Leica with 50mm Sumilux and 28mm Elmarit

I sent the Leica MP back to Camera West for a refund and bought a new Leica M-A through B&H Photo. Later, after more thorough testing at wide apertures, I discovered that that the new 50mm Summilux has a case of front focus. A 28mm Elmarit, purchased shortly thereafter, works fine. By this time, having read all the horror stories of people having had to send their Leicas back to Leica (New Jersey or Germany) multiple times to get them properly repaired under warranty, I decided to adjust the range finder to accommodate the defective 50mm lens out to about 70 feet which is about as far out as it will focus. While that means the rangefinder is not accurate for the 28mm f2.8 lens, the depth of field will cover the error for my purposes. For distances beyond 70 feet, the rangefinder is useless. Close focusing (1-10 meters) for the 50mm is now quite accurate wide open and is also fine for the 28mm. At apertures of 4.8 and above, the 50mm lens works reasonably well at all distances if you’re aware of the quirks of the maladjusted rangefinder.

The End of an Era

Nikon F6, Leica M-A, and Rolleiflex Hy6 — How much longer can they last?

I don’t dispute that there are many happy Leica and Hy6 owners, but I don’t think I am alone in being frustrated by problems with new cameras and atrocious customer service. I don’t believe there is sufficient sales volume anymore to support the manufacturing cost of high end film cameras. The companies that have remained in production this long most likely had to cut costs resulting in a diminished level of quality control during factory assembly and service.

Leica and Rolleiflex have a long history of turning out top notch film cameras and their optics are unsurpassed. You cannot hold these cameras in your hands and not marvel at the caliber of engineering they embody, but the production defects and poor customer service I’ve encountered have completely knocked the shine off the joy of owning and using them. I baby them because I don’t have much confidence that they can be properly repaired by the manufacturers without it becoming an ordeal and I don’t plan to invest anymore money in them for additional lenses or other accessories. Hy6 film backs, which seem to be where the bulk of their problems lie, are as common as unicorns used and outrageously expensive new.

Before buying the Leica and Hy6, I took it for granted that new cameras worked right out of the box because that had been my experience for over 50 years. No camera company is perfect, but I got a new Nikon F6 in 2019 at half the cost of a Leica or Hy6. It has no problems or quirks. The F6 was discontinued in late 2020, but I just bought a new lens for it and never worried that it wouldn’t work fine right out of the box. I wasn’t disappointed. I will never have that level of confidence in Rolleiflex or Leica, despite their little hand-signed inspection/test cards. My reason for buying new was to avoid the risks and “surprises” of buying used, so if I knew a year ago what I know now, I would not have purchased either of them.  Both cameras, if they work properly, are a pleasure to use, but the experiences I’ve had are not something I would ever care to repeat.

For Potential Buyers

It’s human nature to want to feel good about something you already own or are about to buy, making it easy to reject contrary views. Most product reviews available on the internet are little more than a thinly disguised sales pitches, describing features and telling you what you want to hear. If you are thinking about buying a new Leica or Hy6 film camera, I hope things go well for you, but I have a few suggestions to offer:

  1. Above all, buy only from a seller that has a written policy of accepting returns if you’re not satisfied. Don’t assume that they are as customer-friendly as reputable retailers like B&H Photo, Amazon, and Adorama.  Even ebay provides more buyer protection than merchants who simply claim, “Don’t worry.  I’ll take care of you.”
  2. If you buy pricy equipment direct from any merchant, I recommend you check that merchant’s feedback from buyers on ebay. If they don’t sell through ebay, it may be because they’re unwilling to comply with ebay’s customer protection policies.
  3. Insist on a written warranty that tells you where you have to send the camera for repairs and under what circumstances you’re required to pay for shipping and service costs within the warranty period.
  4. After you get your new camera, check it out completely, including functions you’ll rarely use. Check the focusing accuracy by shooting a roll or two of film with the lens at maximum aperture, both at close distances and at infinity. In the case of the Hy6, be sure to have the lens at maximum aperture when you do the lens offset determination.
  5. Shine an LED flashlight through any any lens you buy that was advertised as new. It should be virtually free of haze, dust, and fungus, particularly on inner surfaces. Compare it with other lenses you have.
  6. Finally, if you want more detail on Hy6 issues that I and others have been contending with, you can scan through comprehensive discussion threads here and here.

My Test Data

Three sets of test data follow, each described in PDF form with links to full size negative scans. This may not be meaningful to anyone who doesn’t have a Hy6, but may be useful for someone with a Hy6 who is experiencing similar focusing errors.

  1. The first set is the test pictures and data sent to the factory with the camera to illustrate the auto focusing problem as well as pictures to show that the camera wouldn’t even manually focus at infinity with all three lenses (80mm, 50mm, and 40mm) even with the lens manually set to infinity.

Hy6 Focusing Tests Sent To Factory

  1. The second set of tests was conducted after the Hy6 was returned from the factory, showing that the focusing problems remain exactly as they were before the camera was sent to the factory. In other words, they did nothing to fix it and, to add insult to injury, charged me 320 € to get it back.

Hy6 Focus Tests after return from factory

  1. The third set of tests was conducted after adjusting the pressure plate gap from 0.70 mm to 0.30 mm, showing that adjustment fixed the auto and manual focus problems. It should be noted that the adjustment also fixed the infinity focus as expected. The narrowing of the pressure plate gap to 0.30mm has never caused an issue with uneven frame spacing or stalling of the motor drive, problems which I suspect are more likely related to the binding of the spool hubs on the film insert.

Hy6 Focus Tests after I adjusted pressure plate

DISCLAIMER

I do not recommend attempting to fix camera problems yourself.  It could damage the camera and/or void the warranty.  On the other hand, some people are quite comfortable repairing their own cameras.  I am not one of those people but, with the Hy6, I was left with little choice. With regard to the Leica, there was a lot of information on the web about rangefinder adjustments because rangefinder problems are a common complaint on Leica analog and digital cameras. Also, there is no disassembly required to access the basic adjustments.

Got Haze?

My RB-67 Got Haze.

Earlier this year I pulled my old RB-67 out to admire it and noticed that the 127mm lens had developed a nasty case of the haze.   While doing some internet research, I found that there is a guy on Youtube who makes disassembling Mamiya lenses look easy.  After collecting a few needed tools, I took the lens apart to find that the haze was between elements that were glued together and mounted in a metal collar.  In fact, there were two such lens pairs in the lens, one in front of the shutter and one behind.  Both were fogged.

My first solution was to buy a used lens on ebay, upgrading from my Mamiya-Sekor C lens to the better K/L version.  The one I bought was specifically described with words like “Near Mint” and “no haze”.  Unfortunately, it did have haze, so I returned it, very much discouraged from trying to find a replacement on ebay.

My next solution was to send the lens to a repair center that told me they could separate cemented elements and re-glue them.  But, when I sent them the lens, they told me they couldn’t do it because of the way the elements were sealed in the metal collar.

Enter the Wizard.

So, I turned to the Photrio forums where a poster named Charles Monday, (aka shutterfinger) suggested that heating the cemented elements in an oven would very likely clear the haze by softening the Canada balsam cement between the elements.  I was skeptical, but eventually I decided to give it a shot.

It worked.

I don’t mean it worked a little bit.  I mean, I had to struggle to find any remnants of haze.  I decided to create a short blog post to tell the story because, in a search of ebay listings for about twenty 127mm Mamiya lenses, all but two of them were described as having some haze.  I’m sure this condition affects other lens brands and I’m sure this remedy will be equally applicable to other old lenses, but I only have experience with my one RB-67 lens and I wanted to do my part to spread the word to other RB/RZ-67 owners that this really works to substantially reduce haze between cemented elements.  But, please see the disclaimer at the end of this article.

The procedure.

The recommended procedure consists of heating the glued pair of elements in an ordinary kitchen oven at 325F (163C) for 30 minutes, letting it cool down slowly on its own, and then repeating the procedure twice more.  Then wait for a few days to see if the lens clears.  It it doesn’t, you should repeat the process again.

My Experience.

So, I basically followed the procedure exactly.  I used a thermocouple at the lens position in the oven to monitor the temperature just out of curiosity.  I preheated the oven to 325F (183C), placed the lens pair, complete with the metal collar, in a small shallow metal cookie pan and placed the pan in the middle of the oven’s center rack.  The thermocouple indicated an initial temp after preheat of 377F, but after that it varied between 309F (154C) and 352F (178C).  Half an hour later, I turned off the heat and let it cool for several hours.  After two heat cycles, the lens was still cloudy, but after the third cycle, the lens had cleared.  The milky haze was gone.

The next day I repeated the procedure with the front pair of cemented elements and the milky haze disappeared after the first cycle.  Why it cleared quicker, I don’t know.  Maybe it had less fog or maybe the oven was a little hotter for some reason.  In any case, for this pair I was astute enough to take before and after pictures (scroll down).

The Results.

The bottom line is that this simple process has the ability to substantially reduce haze without doing any perceptible damage to the coating or the mechanical mounting.  Is it a miracle cure?  No, although at first I thought I thought it was.  The haze was originally pretty bad on my lens and there remains, on the rear pair of elements, a slight bluish cast to the lens if you shine an LED flashlight through it.  That residual haze is enough to lower the contrast of the resulting negatives.  The front elements cleared almost completely.  It seems likely that the less severe the haze, the less residual haze there will be after the treatment.

This may not be the end of the story.  The residual haze may continue to clear after the heat treatment.  I plan to let it sit for some weeks or months and then reevaluate whether to subject it to a longer heat cycle or retreat it at a higher temp.

Pictures!

Rear Cemented Element Pair Module

Front Cemented Element Pair Module

Front Pair BEFORE Treatment

Front Pair AFTER Treatment

Front Pair BEFORE Treatment

Front Pair AFTER Treatment

The Inevitable Disclaimer

Don’t do this to a lens you can’t afford to destroy.  I exhausted other avenues of repair before doing this, so I considered this an option of last resort.  Having now done it, I think the risk is pretty low, but not zero.  Just because a few people made it across the mine field doesn’t mean you will.  Be careful not to subject the lens to sharp temperature changes by placing it directly on a hot surface.

Note that other forms of lens cement will probably not respond well to this technique, but decades old lenses that use Canada balsam are fair game.

References.

See the entire Photrio thread here.

What’s up with Kodak Alaris photo products?

Back in January 2020, I bought two one gallon packages of Kodak Dektol.  I noticed the new Dektol was packaged in poly bags rather than the original foil layered packaging that we’re all used to.  When I tried to mix it up a few months later, it was as as brown as coffee.   I opened a second package and got the same result.  Something was terribly wrong.  There was no way I was going to use this stuff.

Fresh Kodak Dektol is as brown as coffee

Apparently, the manufacture and marketing of Kodak darkroom chemicals is now managed by a UK company called Kodak Alaris.  Wikipedia has an entry for Kodak Alaris and how they came to be able to use the Kodak name.

Under the chemicals section of their website, Kodak Alaris has this statement about the Dektol problem:

Luckily, I had the raw chemicals to mix up some D72.  I discarded the Dektol without using it.  I posted about this on Phototrio, where there were various theories about how this could have happened.

While I am no expert in chemical manufacturing, I worked for decades as an engineer for several high tech manufacturing companies and find it impossible to believe a defect of this magnitude could make it out the door of any company with effective quality control processes in place.  It would have to mean that they didn’t sample the quality of their own products.  Even if they contracted the manufacturing out, as is the case here, it doesn’t relieve them of the responsibility to verify the quality of the products that carry their name.

Aside from reviews about the “new” Dektol on B&H Photo, I have now seen reviews and forum posts complaining about recently manufactured Kodak HC-110 having crystals in it and Kodak Xtol producing thin negatives.  Interestingly, Dektol and Xtol have been backordered on B&H and Adorama for some time now.  Kodak Alaris claims they are having trouble meeting supply because of the coronavirus, but I wonder if the shortage may be a result of purging defective inventory.

If that weren’t enough, I shot ten rolls of Kodak 35mm TMax-400 during a November 2019 trip to Italy, every one of which had emulsion damage to the last frame on the roll which I attribute to the process of spooling the film onto 35mm cassettes during production.  I shoot a lot of TMax-400, but have never previously seen that issue.  In fact, during the trip, I alternated every two rolls, between Ilford HP5+ and TMax-400.    There was no such damage to the HP5+.  All the film was shot with the same Nikon F6 camera and developed using the same equipment.  My suspicion is that Kodak US supplies Kodak Alaris with high quality bulk film that Alaris then damages when they spool and package it as 35mm cassettes.

I contacted Kodak Alaris about the Dektol and TMax-400 film back when I discovered the problems, but they never responded.

The Dektol and TMax-400 problems that I experienced, along with the other complaints, seem to indicate a trend of lax quality control with Kodak film and chemical products.  For me, continuing to use them now carries an unacceptably high risk of failure.  I have always liked Kodak products.  No one else makes a film in the same class as TMax and, as far as I know, Dektol is the only low cost prepackaged M-Q paper developer.  But I will not use products that I have to test before using in order to have confidence that they are not defective.

As the saying goes, “Fool me once, shame on you; fool me twice, shame on me.”

[UPDATE 9/25/20]

Apparently the list of Kodak Alaris B&W darkroom chemicals with manufacturing defects has grown to include D-76.  Kodak Professional posted this notice on their Facebook page: